Artificial Intelligence on the Final Frontier:
Using Machine Learning to Find New Earths

ABRAHAM BOTROS
abotros@stanford.edu
Fall 2014, CS221 & CS229, Stanford University

1 Introduction

For ages, mankind has looked towards the stars and won-
dered if our Earth is the only place habitable for life. Now,
with recent advancements in technology, we can use power-
ful telescopes, such as NASA’s Kepler Space Telescope [1],
to observe stars in the visible universe to see if these extra-
solar stars have extrasolar planets (called ‘exoplanets’) like
our Sun and its planets. Specifically, looking for phenom-
ena known as ‘planetary transits’ allows us to observe light
from far-off stars to determine if they likely have exoplanets
orbiting them. Data from such planetary transits and other
detection methods has lead scientists to suggest that, over the
100+ billion stars in just our Milky Way galaxy, there may
be at least as many planets as well [2].

A planetary transit occurs when an exoplanet crosses in
front of a star from the perspective of an observer (in this case,
the Kepler telescope). This planetary transit causes a brief
dip in the observed brightness of the star. The Kepler tele-
scope gathers time series of observations of brightness from
countless stars, with each time series referred to as a ‘light
curve’ (see Figure . By analyzing these light curves, we can
infer if the star might harbor an exoplanet. However, plane-
tary transits are still difficult to identify, as dips in extrasolar
star brightness can be due to numerous different reasons, such
as binary star systems, pulsating stars, red giants, dust and
debris along the line of sight, and any other noisy and un-
related changes in star brightness. Lastly, planetary transits
must be both fairly brief and fairly periodic, corresponding to
the consistent, repetitive orbiting of a small exoplanet around
its parent star.

Due to the challenges that come with the sheer amount of
data involved, the difficulty in dealing with time series data,
and the complexity in matching the properties that a partic-
ular light curve must have to suggest an exoplanet is present,
machine learning seems a great fit for this problem. In this
project, we apply a variety of machine learning and data ma-
nipulation approaches to see if we can accurately classify light
curves (using only light curve brightness readings) belonging
to extrasolar stars with exoplanets and those without. New
and improved algorithms for planetary transit detection allow
scientists to better find new Earths out there among the stars.

2 Data

Data was obtained from NASA Kepler observations hosted
by the NASA Exoplanet Archive at Caltech. [3] The web
interface presents all files in the FITS format [5] with ground-
truth labels. We used light curves for confirmed exoplanet-
harboring stars (NASA and the astronomical community have
concluded that at least one exoplanet orbits this star; here-
after referred to simply as ‘confirmed-planet light curves’)

across all 18 quarters of Kepler light curve data released
so far (QO through Q17), and light curves for confirmed
false-positives (no exoplanets around star, as deemed by
NASA /astronomical community; hereafter, ‘false-positive
light curves’) from quarters Q1 through Q4 (approximately
the same number as confirmed-planet stars across all quar-
ters). We also used only light curves taken at ‘long cadence’
(one ‘cadence’ or observation every 15 minutes; see section
over each quarter (approximately 90 days). Thus, a
given light curve instance consisted of up to about 8,600 mea-
surements; in practice, excluding drop-outs in sensor readings
often brought this number down to the 4,000-6,000 range. A
little over 2,000 light curves were used for this project (about
1,000 for each of the two classes).

All subsequent processing and analyses was done in
Python; in addition, to unpackage the FITS files and ex-
tract the data, the open-source Astropy library [6] was
used. The LIBSVM [7] Python package was used for run-
ning SVMs/SVCs, while all other algorithms and code was
implemented manually using Python and the Numpy package
[8].

‘‘‘‘‘

g

g 8 8 &8 8 8 3

?

BEERERERE] P01 00103

A RTRYYYY
I H“W il

s | |1

§
§
§
§
i
£
§
§
§
X

B0 000 10 20 20 000 %0 40 400

(d)

C

Figure 1: Examples of light curves. (Top) Two differing examples of
confirmed-planet light curves. (Bottom) Two differing examples of false-
positive light curves. The vertical axis plots the observed brightness (PDC-
SAP_FLUX, electrons-per-second flux) of the host star, and the horizontal
axis measures the number of valid, observed data points in that quarter.

Within each light curve, for each time point during that
quarter, various sensor readings are recorded. In particular,
for this project, we want to perform classification using only
the minimal sensor readings in the light curve files; moreover,
we want to do so using only the changes in brightness (leav-
ing out things like headers about location in space, estimated
centroids and centroid changes for host stars, and any other
information that could be collected either from the light curve
files themselves, or from other outside astrometrical sources).
Thus, we focus on each light curve’s ‘PDSCAP_FLUX’ read-
ing, which is the flux in units of electrons-per-second con-

mailto:abotros@stanford.edu

tained in the optimal aperture pixels collected by the Kepler
spacecraft [9]. In particular, these values are recorded after
NASA applied its Presearch Data Conditioning (PDC) mod-
ule’s detrending algorithm to the raw light curve (removing
some known error/noise sources and signals). Thus, all data
input into the machine learning algorithms discussed in this
project will be based solely on raw ‘PDCSAP_FLUX’ read-
ings.

Figure[I]shows some examples of various light curve PDC-
SAP_FLUX readings over time. In particular, two confirmed-
planet and two false-positive light curves are shown. These
curves illustrate some of the fundamental difficulties in at-
tempting classification on this dataset:

(a) Light curves vary greatly, even at a large scale. For ex-
ample, in the confirmed-planet class, sometimes (rarely)
we get ideal examples), where peaks (representing
planetary transits) are very well defined and separable
from the otherwise relatively-constant noise; however,
we can also get cases where there seems to be more
noise than there are defined peaks) Conversely, we
can encounter false-positives with numerous peaks (in
the form of , and sometimes even closer to those in
) that do not pertain to planetary transits (they may
correspond to binary star systems, pulsating stars, etc.).

(b) Light curve brightness levels are often on scales that

cannot be directly compared, depending on the overall

magnitude of the light from the host star. For example,
the units in [Ip are an order of magnitude greater than
the measurements in [Tb.

Overall, light curve brightness measurements are quite
noisy. This includes noise from low-frequency drifting
(1p), high-frequency noise), and possible sensor er-
rors. In noisy examples, it is often not immediately
clear what should be considered a peak and what should
be considered noise is a false-positive example, but
many confirmed-planet curves look similar).

Lastly, there is the problem of somewhat-indirect la-
beling. In particular, the ground-truth labels are for
the actual host star (independent of that quarter’s ob-
served light curve), and not for each and every light
curve for any quarter that star was observed. Impor-
tantly, this means that, just because a curve is from
the confirmed-planet class, it is not required that even
a single planetary transit be visible in each of its light
curves. This is especially true when we consider the
time scales involved - each light curve consists of mea-
surements over 90 days, meaning exoplanets with or-
bital periods greater than that might have no transits

in a given light curveE In general, though, since plan-
etary transits are currently the most common contrib-
utor to exoplanet discovery [I1I], we might expect at
least one planetary transit across all observed quarters
for a given confirmed-planet scenario, though this is not
guaranteedﬂ

Overall, these issues underscore that the dataset is largely
noisy and approximate, with numerous obstacles complicat-
ing classification. This is perhaps expected, though, as extra-
solar stars and exoplanets themselves vary enormously, and
the distances we are dealing with are literally astronomical.
For all these reasons, machine learning becomes necessary to
solve this problem.

3 Preprocessing

Several preprocessing steps were needed to eliminate noise,
normalize between light curves, and extract meaningful fea-
tures. To reinforce the need for more complicated prepro-
cessing and feature extraction, initial baseline tests using just
global statistics of each light curve (mean, median, and stan-
dard deviation) as features for the models discussed in Section
performed at chance at best (not shown). To illustrate the
preprocessing pipeline used here, we will use Figure |2 as a
fairly end-to-end example.

3.1 Initial noise removal

Consider the example light curves shown in Figures and
(both confirmed-planet examples). Both have significant
low-frequency fluctuation, since the curve is oscillating and
moving at a relatively large scale. This is irrelevant (and, in
fact, distracting and misleading) when looking for planetary
transits, as transits must be sharp/brief and cannot be at the
scale of the low-frequency fluctuation in these examples. To
remove this, we applied a moving average calculation to the
raw PDCSAP_FLUX readingsﬂ to calculate a local baseline
for each point, then calculated the percentage-change from
that corresponding local baseline for each data point. Con-
sidering the nearest 15 points - or approximately four hours
- on either side seemed to work best. This therefore con-
verted the data from the space of electrons-per-second flux
over time (Figure[2h) to percentage-change from a local base-
line over time (Figure 2b). As can be seen, this does a great
job of eliminating irrelevant overall fluctuation while preserv-
ing point-to-point relations and changesEI

1For example, an exoplanet with orbital period similar to Earth’s would likely only show a real planetary transit once every three or four
quarters. Fortunately, many planets orbit much quicker than Earth; as an extreme example, the fastest known exoplanet orbital period is 0.73

days [11].

2Exoplanets may be discovered/confirmed via other methods besides planetary transit, for example.
3A filter in the style of a FFT high-pass preprocessing step could also perhaps have been used, but Fourier transforms were avoided in this

project; see Section

4Note that we only care about dips in light (negative percentage-changes), so the resulting small positive peaks from percentage-change operation

are not at all detrimental.

abotros 3

MY(W\WMM w @
AL
- }H (b)
o DAL A L LA
)

Figure 2: Example of preprocessing steps. Preprocessing outlined for
an example confirmed-planet light curve. In all curves, the horizontal axis
corresponds to time points, as before. In (a), the vertical axis is the original
flux in electrons-per-second, as before in Figure in (b) and (c), the vertical
axis is converted to percentage-change from a local baseline using a mov-
ing average calculation. In (c), we show the thresholds based on standard
deviations below the mean; the green line correspondings to one standard
deviation below the mean for this example (‘weak peaks’), and the red line
corresponds to two standard deviations below (‘strong peaks’). As we would
hope, the clearly-visible and defined peaks in this example are all labeled as
strong peaks.

3.2 Thresholding and peak identification

Now that much of the data has been normalized away, we can
simply take value thresholds on the percentage-change metric
to identify peaks. This was impossible before due to the non-
standardized baselines and units we were dealing with. Using
two different thresholds - drops below one and two standard
deviations from the mean of the percentage-change data -
seemed to work best for identifying peaks; see Figure[2b-c. In-
tuitively, we want to identify what points in each light curve
correspond to strong peaks (and therefore, if they are brief
enough, are most likely to correlate to real planetary tran-
sits), what points correspond to decent peaks (decent chance
of being a real planetary transit), and what points are likely
just noise (likely non-peaks). This was done by simply iterat-
ing through all points and labeling them as one or more of the
following three sets: (1) strong peaks, with percentage-change
value less than’| two standard deviations below the mean; (2)
weak peaks, with percentage-change value less than one stan-
dard deviation below the mearﬁ and (3) non-peaks/inter-
peak points, with percentage-change above one standard de-
viation below the mean.

4 Features

Using the output from the preprocessing step outlined above,
we can proceed to extract meaningful features from each time
series of points. In particular, since time series cannot be eas-

ily and reliably aligned, we need to remove time as a factor
when extracting our features. Intuitively, we want to know
about the peaks versus the inter-peak stretches. Furthermore,
we want to design our features to capture some information
regarding: (1) consistent periodicity of peaks - exoplanets
should be orbiting their stars at a constant orbital rate, so
transits should be relatively periodic; and (2) peaks should
be relatively brief - since both Kepler and the exoplanet are
moving (possibly even in perpendicular planes), the transit
time should be relatively short.

Using as a visual example, we would define both (a) and
(c) as peaks for the first threshold, (c) as the only peak for
the second threshold, and (b) as a non-peak/inter-peak in-
terval. We would then calculate the following feature set for
each light curve to approximate all the meaningful informa-
tion desired that was discussed above:

1. Fraction of all time points that are in each of the three
categories

2. Global mean, median, and standard deviation

3. Number of distinct continuous peaks (two such peaks
at (a) and (c) for the first threshold; one at (c) for the
second threshold)

4. Peak width (widths of (a) and (c) in time) - mean and
standard deviation

5. Peak max magnitude (most negative value of the peak)
- mean and standard deviation

6. Overall peak points’ values - mean and standard devia-
tion

7. Non-peak/inter-peak width (b) - mean and standard de-
viation

Where feature subsets for numbers [3] through [7] are computed
for both the first threshold and the second threshold sepa-
rately. Overall, this constitutes 24 different features. To
(fairly naively) account for possible relations between these
various features (and to be able to place these first-order fea-
tures into a higher dimension where we might be able to learn
a linear boundary that is non-linear in the original feature
space), we also take pairwise products of all of these 24 fea-
tures. When we add in a bias term of 1 (for logistic regression,
for example), the first-order features, and all the second-order
pairwise features, we get a total number of 325 features, thus
meaning that each light curve is represented as a vector in
R3?5 in our feature space.

Since many of the resulting features are still on fairly
incomparable scales (which is exponentially exaggerated by
some of the learning algorithms used), we normalize each fea-
ture using mean removal and dividing by the standard devi-
ation (similar to the preprocessing and normalizing we might
do for an algorithm like PCA, for example). In manual inspec-
tion of the new scaled feature ranges, this seemed to work well

5Note that ‘less than’ a certain threshold refers to the actual signed relation to the mean, and not simply the magnitude distance from the

mean.

6 As a result, points in the two-standard-deviation category are always in the one-standard-deviation category - this intuitively makes more sense
since it prevents splitting up a single peak into two perceived peaks at the one-standard-deviation level, and also gave slightly better performance.

in properly scaling features to be comparable to all other fea-
tures; in testing, this also improved performance (not shown).

To address the concerns we mentioned above, in particu-
lar, we model the consistency and periodicity of any planetary
transits (peaks in our data) by looking at the standard devi-
ation of the non-peak/inter-peak intervals, and would hope
to see minimal standard deviation for confirmed-planet cases.
In addition, by inspecting peak width, we approximate how
brief peaks for confirmed-planet examples should be in com-
parison to false-positive examples. Peak max and average
values give us information about the strength of the peaks,
and our counts and fractions for number of peaks and peak
points tell us how many peaks there are and how much they
dominate the entire time series.

(b)
~

(c)

Figure 3: Visual reference for peak feature extraction. Note this
is simply a toy example and is not drawn accurately/to scale. The black
line represents the mean (usually around 0% percentage-change in the PD-
CSAP_FLUX time series), and the green and red line represent the first and
second thresholds, respectively. The first threshold corresponds to one stan-
dard deviation below the mean, and the second threshold corresponds to
two standard deviations below. By separating points as such, we can eas-
ily extract features about both the strong peaks, the weak peaks, and the
inter-peak intervals.

5 Models and learning algorithms

5.1 Learning algorithms

This is primarily a supervised learning problem, where we
want to take the feature vectors constructed above for each
light curve and classify them correctly after training with the
ground-truth labels. As mentioned, we have two ground-truth
classes (confirmed-planet and false-positive), and a large fea-
ture vector for each light curve. We used four distinct machine
learning algorithms to perform classification on this dataset:
k-nearest neighbors, logistic regression, softmax re-
gression, and SVM. All algorithms except SVM were im-
plemented manually in Python with Numpy [8] (SVMs were
run using LIBSVM [T7]).

For k-nearest neighbors, at test time, we want to find
the & most similar training examples to our test input and
simply approximate the proper test label using the ground-
truth training labels. To find the nearest neighbor to our test

input in our training set (Dirain), we find:

min
(x,y) EDtrain

lp(z) — ¢()| (1)

arg

Then simply return the found label y; this can be easily gener-
alized to the k-nearest neighbors algorithm, where we instead
return the mode of the nearest k neighbors’ labels.

In logistic regression, we want to find a decision bound-
ary for binary classification. We use regularization and
stochastic gradient ascent (SGA) to find the MLE weights:

MLE: 6 := arg maxg £(0) = ylog hg(z) + (1 — y) log (1 — he(z)) — 3A||0]2

Gradient: % = (y — ho(z))z; — N0,

SGA update: 0; :==0; + « {(y — ho(z))z; —)\9]}

For softmax regression, we apply K-means (see Sec-
tion to break down the two parent classes into K new
child classes. This allows us to do learning in the multi-class
classification environment (see Section @, and in final testing
output and test against the two parent class labels. In gen-
eral, in softmax regression, we modify our logistic regression
hypothesis function to handle classification problems where
the output label/class y is in {1,...,k}, as partitioned by
K-means:

exp(67)

he(z) = [ZLCXP(GJTI‘)

exp(6])]T
3 T
i1 exp(0] @)

Where each entry in the hypothesis matrix above is of the
L — il) — _ exp(6] @)

form ¢z - p(y - Z|:Zja0) - Z?:l exp(ngx)

stochastic gradient descent with the following gradient:

, and we can use

Vo, J(0) = —|2(1{y = j} — ply = j\w;e»} A

For SVMs and support vector classification (SVC),
we want to find an optimal-margin decision boundary by solv-
ing the SVM dual optimization problemﬁ

max, W(a) = 31", a; — % an=1 y<i>y(j>aia]- (x@, ()
An RBF/Gaussian kernel was applied to our SVM using LIB-
SVM.

All hyperparameters (such as regularization terms, num-
ber of maximum iterations, step size type, and convergence
criteria) for logistic regression and softmax regression were
chosen using manually-implemented K-fold cross-validation
(due to excessive runtime and limited resources, 5-fold cross-
validation was used). Hyperparameters for SVM classification

were chosen automatically using cross-validation as part of the
given LIBSVM tools.

7As we can see, the last parameter in our hypothesis function is redundant, due to sum of total probability (all entries must sum to 1). However,
in practice, when we use regularization (for any A > 0, the cost function is now strictly convex and we are guaranteed a unique solution. This

allows us to keep all the parameters (01, ..

., 0) without arbitrarily setting one of them to zero [12].
8Subject to the constraints: a; > 0,5 =1,...,m and >.1%, a;y() = 0.

5.2 Other algorithms

To aid in some of the analyses, other algorithms were enlisted,
including K-means and PCA. K-means was implemented
manually in Python using Numpy, while the built-in PCA
function of matplotlib [I3] was used for running PCA.

K-means is an algorithm for unsupervised clustering
where we want to minimize the distortion function:

J(ep) =2y 129 = peeo |12

Where we want each training example () to be assigned to
the optimal cluster centroid p.:) via its assignment cDto min-
imize J; we can do this using the K-means algorithm, where
we (1) assign each training example to the closest cluster cen-
troid, then (2) move each cluster centroid to the mean of the
points assigned to it. For each distinct call to K-means, we
repeatedly ran the algorithm with different random initializa-
tions to find the assignments that most successfully minimized
the distortion value.

PCA, or Principal Components Analysis, allows us to re-
duce dimensionality (especially helpful considering our very
large feature space) by finding the k principal components
(which give a lower, k-dimensional basis and approximation
for our original features). To do so, we simply find the top k
eigenvectors (uq,...,ux; k < n, where n is the length of our
original feature vectors) of the empirical covariance matrix
from the data (assuming we have already subtracted the mean
and divided by the standard deviation, which we discussed in
Section . Therefore, to represent an original feature vector
z in this new basis, we simply compute:

y=[ulz .. ’ILZ.’IJ]T €RF

We can then do learning in this lower, k-dimensional feature
space by transforming all our inputs using this basis, allowing
more efficient learning.

6 Results

Using the optimal hyperparameters for each algorithm ob-
tained via K-fold cross validation (as explained in Section
, we obtained the performance metrics shown in Table
Performance is in terms of percent-correct, and is shown for
the hyperparameters for each algorithm that lead to the best
(cross-validation) performanceﬂ

Learning algorithm | Train Performance | Test Performance
K-Nearest Neighbors - 83.9%
Logistic Regression 87.1% 84.5%
SVM, RBF Kernel 82.29% 83.3%
Softmax Regression 87.0% 85.6%

Table 1: Performance of learning algorithms on full training and
testing sets.

Before adding softmax regression, logistic regression (with
no regularization) had the best test performance on this
dataset. However, we wanted to see if we could further im-
prove performance. To do so, we reasoned that, since ex-
oplanets usually fall in different buckets of shapes, sizes, or-
bits, and other physical characteristics (Earth analogs, Super-
Earths, gas giants, etc.), we might be able to first cluster
them to learn better decision boundaries for each sub-class of
confirmed-planet and false-positive light curves.

This indeed ended up giving a small increase in perfor-
mance (see Figure , though it seems like the softmax re-
gression performance may be highly dependent on the nature
of the clustering (the cluster assignments that minimize the
K-means distortion function are not necessarily the ones that
maximize softmax regression performance).

Softmax regression performance over K-means

clustering

__.86.0
‘9‘) o
£ 850 VAN
S
R 840 - - |
& 530 — L o mSoftmax regression
£ Logistic regression
£ 820
5
2 810
i
2 80.0

2 3 4 5 7 10 15

Number of K-means clusters

Figure 4: Softmax regression performance as a function of number
of K-means clusters. In particular, K = 10 enabled the best softmax
regression classification performance, surpassing logistic regression.

In particular, we used K-means clustering to first do un-
supervised clustering of each of the two parent classes inde-
pendently. Thus, each of the two parent classes was broken
down into K new child classesm In doing so, we might be
able to better learn how to distinguish various distinct sub-
types (sub-classes or clusters), instead of having to group all
instances of each parent class together when learning a deci-
sion boundary. To then perform classification, we learn using
softmax regression over the new child classes, choose opti-
mal hyperparameterﬁ using K-fold cross validation over the
child class labels on the validation sets, and then at the final

9For K-nearest neighbors, K = 3 performed best. For logistic regression, setting a max iteration limit of 2,000 iterations through the entire
dataset, along with zero regularization and step size equal to one over the square root of the number of updates made so far, did the best (though
training with only around 500 iterations gave nearly-similar performance). For SVM classification, the best hyperparameters were ¢ = 512 and

4 = 0.03125.

101f K = 3, for example, we would have 3 child classes for confirmed-planet curves and 3 for false-positive curves, for a total of K x2 = 6 possible

child classes to perform classification over.

HFor 10 K-means clusters, the optimal hyperparameters for softmax regression were roughly 1,000 training set iterations using stochastic gra-
dient descent (though training with as few as 200-300 iterations gave nearly-similar performance), with a relatively small regularization parameter
(0.001) and dynamic step size (one over square root of number of updates made so far).

abotros 6

test phase simply output and test against the child’s parent
class label instead of the child class label. Putting this all
together gave the optimal performance out of all other learn-
ing algorithms explored here (though overall, all algorithms
performed similarly).

Lastly, we briefly attempted to run PCA to reduce the di-
mensionality of the feature space, taking only the k top prin-
cipal components and re-running tests for each value of k over
all learning algorithms with their optimal hyperparameters.
This worked surprisingly well and speaks to PCA’s ability
to reduce dimensionality while preserving variance; Figure
shows that performance of most algorithms stayed fairly high
even when using a minimal basis of principal components (as
few as 5-50 principal components down from our original 325,
depending on the algorithm). Of note, logistic regression and
softmax regression saw fairly sizeable declines as the num-
ber of principal components became quite small; since SVMs
were still able to learn in these spaces, we hypothesize that
the reduced principal components remaining may have corre-
sponded to some of the more linearly-related features in the
dataset, so logistic regression and softmax regression were un-
able to learn non-linear decision boundaries (the SVM’s RBF
kernel might have allowed it to do continue to do so by al-
lowing it to work in a higher-dimensional feature space due
to inner products). At any rate, the data shows that we can
get away with as few as 50 principal components in almost all
cases and still perform fairly similarly to performance using
our full feature space!

Test performance vs PCA dimensions

®
8

ke

=om=Logistic regression

w@=softmax regression (K=10)

@
a

Softmax regression (K=4)

em-nearest neighbors

Test performance (% correct)
P N
2 3

—H=SVM

g

1 5 20 50 100 150 200 (All,
original)
Number of principal components used for training and testing (via PCA)

Figure 5: Learning algorithm test performance as a function of PCA
component count. Note that most learning algorithms maintained good
performance, even when using a very reduced number of features. Also note
that two versions of K-means coupled with softmax regression were run for
this figure: the performance of softmax regression when K-means clustered
points into 10 clusters and PCA reduced dimensionality was very poor, so we
also sampled test performance for softmax regression with K-means cluster-
ing into 4 clusters (the second-best cluster number from our earlier K-means
testing; not shown). In addition, a bias term was still added in to all feature
vectors, in addition to the number of principal components shown at each
data point. Lastly, the final data points correspond to the original dataset
and full feature space, with no PCA applied.

7 Error analysis

By examining the examples that were classified incorrectly, we
can get a better idea of where the algorithms are not properly
learning, and what examples and features might be confusing
the algorithms. In particular, across all algorithms, many of
the examples similar to those shown in Figure [6] were mis-
classified. Figure [6h shows a false-positive light curve; how-
ever, it appears to have all the characteristics of a confirmed-
planet curve, including strong, defined, and consistently peri-
odic peaks. On the other hand, Figure[6p shows a confirmed-
planet light curve that appears to be more akin to random
noise. Examples like these are extremely tricky for the al-
gorithms shown, as the features for these types of confusing
examples are likely very similar to the opposite class. Such
light curves exemplify many of the problems outlined in Sec-
tion 2} Properly classifying such curves would likely involve
bringing in outside information other than just raw brightness
changes, and might also benefit from linking light curves from
the same star across different quarters (see Section

Figure 6: Examples of light curves that were often misclassified
by all algorithms. Example (a) is actually a false-positive light curve,
though it appears to have distinct, periodic peaks. Example (b) is actually a
confirmed-planet light curve, though it looks more like noise. In particular,
compare these to the examples in Figure E

8 Discussion

Overall, we present a system for preprocessing, feature ex-
traction, and machine learning on a large dataset of Kepler
Telescope light curves for binary classification of stars as po-
tentially harboring exoplanets or likely having none. This
system performs quite well, with up to around 85% accu-
racy in testing. As more time passes and more exoplanets
are discovered (we are still in the relatively early stages of
exoplanet discovery, especially using planetary transits), the
system will have more data to train on and could therefore
perform even better in the future. In its current state, we
guess that it performs likely on a similar level to NASA algo-
rithms, though more literature research is needed to validate
this assumptionE In addition, using informally-trained hu-
man observation as a proxy to an oracle, the author was able
to achieve around 70% correct in binary classification, mean-
ing the learning algorithms discussed in this work perform
even better than humans with only informal trainingE

12We were unable to find hard numbers regarding corresponding performance from systems used by NASA and other astronomical research
groups. However, it is important to note that stars that are labeled as possibly harboring exoplanets due to detected planetary transits first
become ‘objects of interest’ or ‘exoplanet candidates’, and are confirmed through more thorough investigation (and possibly other methods, such

as spectrometry) before becoming a confirmed exoplanet.

13Crowd-sourced efforts like that at PlanetHunters.org attempt to use human pattern recognition to properly classify complex light curves that
computer algorithms might have missed. Sites like this include more ‘formal’ training, so human performance likely increases significantly, at least

for many of the edge-cases that could be specifically trained on.

PlanetHunters.org

All algorithms performed well on this manually-extracted
feature set; however, this is not to say that this was the first
feature set tried. Countless different feature extract pipelines,
methods, components, and feature vector sizes were tried be-
fore reaching the final performances shown above. In particu-
lar, for preprocessing and feature extraction, numerous peak
thresholds, peak characteristics, normalization/scaling tech-
niques, and set sizes were entertained along the way.

There is likely also much room for improvement - in par-
ticular, more analysis could be done to better identify which
features are most important and which are distractors by eval-
uating metrics such as mutual informationlEI In addition,
more domain knowledge beyond the author’s limited knowl-
edge could be injected into the data extraction and feature
selection. While one of the primary goals of this project was
to classify using only light curve brightness metrics in a single
light curve, incorporating data from other sources (spectrom-
etry, locations in space, knowledge about each star, centroid
changes for host stars, etc.) and linking light curves for the
same star across different quarters (a given star should only
be given one label across all observed light curves/quarters)
would likely both help classification.

It should also be noted that Fourier transforms and
wavelet analysis could likewise have been applied in the pre-
processing and feature extraction steps, but we chose to avoid
these techniques for a couple reasons. For one, the author had
minimal experience with these techniques before, meaning it
would have been quite difficult to properly and thoroughly
explore and apply these techniques in the minimal time avail-
able. In addition, we reasoned that the information was not in
the frequency domain, since we really cared about very small-
scale, local, point-to-point changes; thus, doing any trans-
form (whether using a sliding Fourier transform window or
wavelet analysis to maintain some time-to-time information)
would likely have smoothed out and lost some of the crucial
point-to-point information, by definition of these techniques.
Lastly, we reasoned that, at best, the output of these tech-
niques would give a somewhat smoothed-out version of the
initial data points, and we would still have to run some form
of peak detection to eliminate noise and isolate only peaks -
which would be much more difficult with smoothed-out data.
However, that said, given more time, sliding Fourier trans-
forms and wavelet analysis would be some of the first new
techniques to apply to the preprocessing and feature extrac-
tion pipeline described here.

Other algorithms could also be tested on this (and any
augmented) feature set. For example, SVMs with other ker-
nels, neural networks, and other such algorithms might give
good performance here, especially if there are certain nonlin-
ear decision boundaries that we were unable to learn using our
approach. Even more hyperparameter tweaking could likely
give slightly better performance, too, but the exorbitant time
needed to run the algorithms and tests already discussed pre-
cluded doing so.

Overall, with minimal domain knowledge and a general

approach to the raw data, given a light curve consisting of
brightness readings for far-off extrasolar stars over 90 days,
we were able to preprocess and extract features relevant to
planetary transits, learn over these features using machine
learning algorithms, and classify the stars as having exoplan-
ets or being false-positives with relatively high probability
(around 85%). We would say that, as a whole, this project
was a success, and could even be used to classify exoplanet-
harboring stars and identify exoplanets that have yet to be
discovered. We hope to continue to develop and test this
system as more exoplanet data surfaces, as it would be very
interesting to see if predictions on future data are reliable and
can classify exoplanet systems that have not even been con-
firmed. All in all, this work contributes to mankind’s ongoing
efforts to better understand our Earth, our universe, and our
place in the stars as we search for new Earths on the final
frontier.

9 Final note

As a final note, I want to thank all the people who made
(CS221 and CS229 possible, including Dr. Percy Liang, Dr.
Andrew Ng, and all the TA’s who put an incredible amount
of work into these classes. These classes, and this project,
were a great learning experience, so thank you! - Abraham
Botros

10 References

[1] See http://kepler.nasa.gov/.

[2] Cassan, A., D. Kubas, J.-P. Beaulieu, M. Dominik, K. Horne, J.
Greenhill, J. Wambsganss, J. Menzies, A. Williams, U. G. Jorgensen,
A. Udalski, D. P. Bennett, M. D. Albrow, V. Batista, S. Brillant, J.
A. R. Caldwell, A. Cole, Ch. Coutures, K. H. Cook, S. Dieters, D.
Dominis Prester, J. Donatowicz, P. Fouque, K. Hill, J. Kains, S. Kane,
J.-B. Marquette, R. Martin, K. R. Pollard, K. C. Sahu, C. Vinter, D.
Warren, B. Watson, M. Zub, T. Sumi, M. K. Szymanki, M. Kubiak, R.
Poleski, I. Soszynski, K. Ulaczyk, G. Pietrzynski, and L. Wyrzykowski.
“One or More Bound Planets per Milky Way Star from Microlensing
Observations.” Nature 481.7380 (2012): 167-69. Web.

Also see http://www.nasa.gov/mission_pages/kepler/
news/kepler20130103.html) and http://www.space.com/
19103-milky-way-100-billion-planets.html.

[3] See http://exoplanetarchive.ipac.caltech.edu/index.htmll
[4] See http://archive.stsci.edu/kepler/.

[5] See http://fits.gsfc.nasa.gov/| and http://en.wikipedia.org/wiki/
FITS.

[6] See http://www.astropy.org/.

[7] See http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

[8] See http://www.numpy.org/.

[9] See http://archive.stsci.edu/kepler/manuals/archive_manual.pdf|
[10] See http://kepler.nasa.gov/education/activities/transitTracks/.

[11] See collected information at
Discoveries_of_exoplanets,

http://en.wikipedia.org/wiki/

[12] See http://ufldl.stanford.edu/wiki/index.php/Softmax_Regression and
http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/,

[13] See http://matplotlib.org/api/mlab_api.html#matplotlib.mlab.PCA.

14We started an investigation into correlation of various features with labels, but were unable to complete this in the time allotted, and opted

for the PCA approach instead.

http://kepler.nasa.gov/
http://www.nasa.gov/mission_pages/kepler/news/kepler20130103.html
http://www.nasa.gov/mission_pages/kepler/news/kepler20130103.html
http://www.space.com/19103-milky-way-100-billion-planets.html
http://www.space.com/19103-milky-way-100-billion-planets.html
http://exoplanetarchive.ipac.caltech.edu/index.html
http://archive.stsci.edu/kepler/
http://fits.gsfc.nasa.gov/
http://en.wikipedia.org/wiki/FITS
http://en.wikipedia.org/wiki/FITS
http://www.astropy.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.numpy.org/
http://archive.stsci.edu/kepler/manuals/archive_manual.pdf
http://kepler.nasa.gov/education/activities/transitTracks/
http://en.wikipedia.org/wiki/Discoveries_of_exoplanets
http://en.wikipedia.org/wiki/Discoveries_of_exoplanets
http://ufldl.stanford.edu/wiki/index.php/Softmax_Regression
http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/
http://matplotlib.org/api/mlab_api.html#matplotlib.mlab.PCA

11 Supplemental

11.1 ‘Long cadence’ vs ‘Short cadence’ light curves

‘Long’ vs ‘short’ cadence refers to the frequency of readings. In long cadence light curves, exposures are taken every 15 minutes; in
short cadence light curves, there is only one minute in between each sampling. Long cadence curves are over one quarter/90 days, while
short cadence curves vary over shorter time spans. We found long cadence light curves to be much more abundant in the dataset, and
intuitively it seems like they would help avoid some of the noise possibly present at the higher sampling rate. We believe short cadence
light curves are supposed to be more helpful for more detailed studies of the actual star, and not as appropriate here for planetary

transit detection.

	Introduction
	Data
	Preprocessing
	Initial noise removal
	Thresholding and peak identification

	Features
	Models and learning algorithms
	Learning algorithms
	Other algorithms

	Results
	Error analysis
	Discussion
	Final note
	References
	Supplemental
	`Long cadence' vs `Short cadence' light curves

